首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3370篇
  免费   347篇
  国内免费   365篇
测绘学   10篇
大气科学   284篇
地球物理   1044篇
地质学   292篇
海洋学   1047篇
天文学   682篇
综合类   60篇
自然地理   663篇
  2024年   4篇
  2023年   23篇
  2022年   36篇
  2021年   31篇
  2020年   50篇
  2019年   77篇
  2018年   61篇
  2017年   71篇
  2016年   68篇
  2015年   80篇
  2014年   100篇
  2013年   186篇
  2012年   47篇
  2011年   116篇
  2010年   111篇
  2009年   211篇
  2008年   259篇
  2007年   304篇
  2006年   227篇
  2005年   176篇
  2004年   188篇
  2003年   205篇
  2002年   172篇
  2001年   119篇
  2000年   138篇
  1999年   155篇
  1998年   150篇
  1997年   71篇
  1996年   91篇
  1995年   76篇
  1994年   73篇
  1993年   69篇
  1992年   58篇
  1991年   53篇
  1990年   48篇
  1989年   38篇
  1988年   25篇
  1987年   24篇
  1986年   18篇
  1985年   13篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   19篇
  1979年   3篇
  1978年   7篇
  1977年   5篇
  1954年   4篇
排序方式: 共有4082条查询结果,搜索用时 15 毫秒
31.
Unsteady two-dimensional Navier-Stokes equations and Navier-Stokes type model equations for porous flow were solved numerically to simulate the propagation of water waves over a permeable rippled bed. A boundary-fitted coordinate system was adopted to make the computational meshes consistent with the rippled bed. The accuracy of the numerical scheme was confirmed by comparing the numerical results concerning the spatial distribution of wave amplitudes over impermeable and permeable rippled beds with the analytical solutions. For periodic incident waves, the flow field over the wavy wall is discussed in terms of the steady Eulerian streaming velocity. The trajectories of the fluid particles that are initially located close to the ripples were also determined. One of the main results herein is that under the action of periodic water waves, fluid particles on an impermeable rippled bed initially moved back and forth around the ripple crest, with increasing vertical distance from the rippled wall. After one or two wave periods, they are then lifted towards the next ripple crest. All of the marked particles on a permeable rippled bed were shifted onshore with a much larger displacement than those on an impermeable bed. Finally, the flow fields and the particle motions close to impermeable and permeable beds induced by a solitary wave are elucidated.  相似文献   
32.
33.
An efficient focusing model for generation of freak waves   总被引:1,自引:1,他引:0  
Based on the Longuet-Higgins wave model theory, the previews studies have shown that freak waves can be generated in finite space and time successfully. However, as to generating high nonlinear freak waves, the simulation results will be unrealistic. Therefore, a modified phase modulation method for simulating high nonlinear freak waves was developed. The surface elevations of some wave components at certain time and place are positive by modulating the corresponding random initial phases, then the total surface elevation at the focused point is enhanced and furthermore a freak wave event is generated. The new method can not only make the freak wave occur at certain time and place, but also make the simulated wave surface time series satisfy statistical properties of the realistic sea state and keep identical with the target wave spectrum. This numerical approach is of good precision and high efficiency by the comparisons of the simulated freak waves and the recorded freak waves.  相似文献   
34.
New large-scale laboratory data are presented on the influence of long waves, bichromatic wave groups and random waves on sediment transport in the surf and swash zones. Physical model testing was performed in the large-scale CIEM wave flume at UPC, Barcelona, as part of the SUSCO (swash zone response under grouping storm conditions) experiment in the Hydralab III program (Vicinanza et al., 2010). Fourteen different wave conditions were used, encompassing monochromatic waves, bichromatic wave groups and random waves. The experiments were designed specifically to compare variations in beach profile evolution between monochromatic waves and unsteady waves with the same mean energy flux. Each test commenced with approximately the same initial profile. The monochromatic conditions were perturbed with free long waves, and then subsequently substituted with bichromatic wave groups with different bandwidth and with random waves with varying groupiness. Beach profile measurements were made at half-hourly and hourly intervals, from which net cross-shore transport rates were calculated for the different wave conditions. Pairs of experiments with slightly different bandwidth or wave grouping show very similar net cross-shore sediment transport patterns, giving high confidence to the data set. Consistent with recent small-scale experiments, the data clearly show that in comparison to monochromatic conditions the bichromatic wave groups reduce onshore transport during accretive conditions and increase offshore transport during erosive conditions. The random waves have a similar influence to the bichromatic wave groups, promoting offshore transport, in comparison to the monochromatic conditions. The data also indicate that the free long waves promote onshore transport, but the conclusions are more tentative as a result of a few errors in the test schedule and modifications to the setup which reduced testing time. The experiments suggest that the inclusion of long wave and wave group sediment transport is important for improved near-shore morphological modeling of cross-shore beach profile evolution, and they provide a very comprehensive and controlled series of tests for evaluating numerical models. It is suggested that the large change in the beach response between monochromatic conditions and wave group conditions is a result of the increased significant and maximum wave heights in the wave groups, as much as the presence of the forced and free long waves induced by the groupiness. The equilibrium state model concept can provide a heuristic explanation of the influence of the wave groups on the bulk beach profile response if their effective relative fall velocity is larger than that of monochromatic waves with the same incident energy flux.  相似文献   
35.
In order to investigate surf zone hydrodynamics through two-dimensional numerical simulations of nearshore circulation under random wave environment, a nearshore circulation model, SHORECIRC, and a random wave model, SWAN, were combined and utilized. Using this combined model, a numerical simulation of the October 2, 1997 SandyDuck field experiment was performed. For this simulation, field topography and an input offshore spectrum were constructed using observed data sets synchronized with the experiment. The wave-breaking model in SWAN was modified by using breaker parameters varied according to bottom slope. The simulation results were compared with the experimental data, which revealed a well-developed longshore current, as well as with results using other combinations which were SHORECIRC and its original monochromatic wave-driver, and SHORECIRC and the default of SWAN. The results from the novel combined model agreed well with the experimental data. The results of the present simulation also indicate that alongshore field topography influences shear fluctuation of longshore currents.  相似文献   
36.
The results of direct numerical simulations of the boundary layer generated at the bottom of a solitary wave are described. The numerical results, which agree with the laboratory measurements of Sumer et al. (2010) show that the flow regime in the boundary layer can be laminar, laminar with coherent vortices and turbulent. The average velocity and bottom shear stress are computed and the results obtained show that the logarithmic law can approximate the velocity profile only in a restricted range of the parameters and at particular phases of the wave cycle. Moreover, the maximum value of the bottom shear stress is found to depend on the dimensionless wave height only, while the minimum (negative) value depends also on the dimensionless boundary layer thickness. Diagrams and simple formulae are proposed to evaluate the minimum and maximum bottom shear stresses and their phase shift with respect to the wave crest.  相似文献   
37.
The loss of beach sand from berm and dune due to high waves and surge is a universal phenomenon associated with sporadic storm activities. To protect the development in a coastal hazard zone, hard structures or coastal setback have been established in many countries around the world. In this paper, the requirement of a storm beach buffer, being a lesser extent landward comparing with the coastal setback to ensure the safety of infrastructures, is numerically assessed using the SBEACH model for three categories of wave conditions in terms of storm return period, median sand grain size, berm width, and design water level. Two of the key outputs from the numerical calculations, berm retreat and bar formation offshore, are then analysed, as well as beach profile change. After having performed a series of numerical studies on selected large wave tank (LWT) test results with monochromatic waves using SBEACH, we may conclude that: (1) Berm erosion increases and submerged bar develops further offshore as the storm return period increases for beach with a specific sand grain size, or as the sand grain reduces on a beach under the action of identical wave condition; (2) Higher storm waves yield a large bar to form quicker and subsequently cause wave breaking on the bar crest, which can reduce the wave energy and limit the extent of the eroding berm; (3) A larger buffer width is required for a beach comprising small sand grain, in order to effectively absorb storm wave energy; and (4) Empirical relationships can be tentatively proposed to estimate the storm beach buffer width, from the input of wave conditions and sediment grain size. These results would benefit a beach nourishment project for shore protection or design of a recreational beach.  相似文献   
38.
An existing 2D time-domain method for separating irregular incident and reflected waves by wavelet transform [Ma et al., 2010. A new method for separation of 2D incident and reflected waves by the Morlet wavelet transform. Coastal Eng., 57(6):597–603] is extended to account for obliquely incident irregular waves propagating over sloping bottoms. The linear shoaling and refraction coefficients are adopted to determine the amplitude and phase changes of waves. The optimal central frequency of the Morlet wavelet is determined by the minimum Shannon wavelet entropy. Numerical tests show that the present method can accurately separate waves over horizontal depths. For waves at sloping bottoms, however, the separation errors increase as bottom slope increases and are significant for waves with incident angle larger than π/3.  相似文献   
39.
The idealized model of Besio et al. (On the formation of sand waves and sand banks. Journal of Fluid Mechanics 2006; 557: 1–17) is used to predict the wavelength of tidal dunes (sand waves) generated by tidal currents in estuaries and shallow seas. The predictions are then analysed and a formula is proposed to estimate the wavelength of tidal dunes as a function of the parameters of the problem. The wavelength of the dunes is found to increase when the water depth is increased and/or the strength of the tidal current is decreased. On the other hand, the size of the bottom material (if medium sand is considered) and the tidal ellipticity are found to have a relatively small influence on the length of the bottom forms. The formula proposed provides results which are consistent with field observations of different authors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
40.
Crissy Field Marsh (CFM; http://www.nps.gov/prsf/planyourvisit/crissy-field-marsh-and-beach.htm) is a small, restored tidal wetland located in the entrance to San Francisco Bay just east of the Golden Gate. The marsh is small but otherwise fairly typical of many such restored wetlands worldwide. The marsh is hydraulically connected to the bay and the adjacent Pacific Ocean by a narrow sandy channel. The channel often migrates and sometimes closes completely, which effectively blocks the tidal connection to the ocean and disrupts the hydraulics and ecology of the marsh. Field measurements of waves and tides have been examined in order to evaluate the conditions responsible for the intermittent closure of the marsh entrance. The most important factor found to bring about the entrance channel closure is the occurrence of large ocean waves. However, there were also a few closure events during times with relatively small offshore waves. Examination of the deep-water directional wave spectra during these times indicates the presence of a small secondary peak corresponding to long period swell from the southern hemisphere, indicating that CFM and San Francisco Bay in general may be more susceptible to long period ocean swell emanating from the south or southwest than the more common ocean waves coming from the northwest. The tidal records during closure events show no strong relationship between closures and tides, other than that closures tend to occur during multi-day periods with successively increasing high tides. It can be inferred from these findings that the most important process to the intermittent closure of the entrance to CFM is littoral sediment transport driven by the influence of ocean swell waves breaking along the CFM shoreline at oblique angles. During periods of large, oblique waves the littoral transport of sand likely overwhelms the scour potential of the tidal flow in the entrance channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号